SN

First Semester B.E. Degree Examination, Dec.2016/Jan.2017 Engineering Mathematics – I

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each module.

Module - 1

1 a. Find the nth derivative of
$$\frac{x}{(x-1)(x^2+x-2)}$$
. (07 Marks)

- b. Find the angle of interaction of the curves, $r = a(1 + \cos\theta)$ and $r^2 = a^2 \cos 2\theta$. (06 Marks)
- c. Derive an expression for the radius of curvature in polar form. (07 Marks)

OR

2 a. If
$$\sin^{-1} y = 2\log(x+1)$$
, prove that $(x+1)^2 y_{n+2} + (2n+1)(x+1)y_{n+1} + (n^2+4)y_n = 0$. (07 Marks)

- b. Find the pedal equation, $r^m = a^m (\cos m\theta + \sin m\theta)$. (06 Marks)
- c. If ρ be the radius of curvature at any point P(x, y) on the parabola $y^2 = 4ax$ show that ρ^2 varies as $(SP)^3$ where S is the focus of the parabola. (07 Marks)

Module - 2

- 3 a. Obtain Taylor's series expansion of log(cos x) about the point $x = \frac{\pi}{3}$ upto the fourth degree term (07 Marks)
 - b. If u = f(r) where $r = \sqrt{x^2 + y^2 + z^2}$, show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = f''(r) + \frac{2}{r}f'(r)$. (06 Marks)
 - c. If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$. (07 Marks)

OR

4 a. Evaluate
$$\lim_{x\to 0} \left[\frac{1}{x^2} - \cot^2 x \right]$$
. (07 Marks)

- b. If u be a homogeneous function of degree n in x and y, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$.

 (06 Marks)
- c. If $u = x^2 + y^2 + z^2$, v = xy + yz + zx, w = x + y + z find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$. (07 Marks)

Module – 3

- 5 a. Find the unit tangent vector and unit normal vector to the curve $\overrightarrow{r} = \cos 2t \ i + \sin 2t \ j + tk$ at $x = \frac{1}{\sqrt{2}}$.
 - b. Using differentiation under the integral sign, show that $\int_{0}^{\pi} \frac{\log(1 + a\cos x)}{\cos x} dx = \pi \sin^{-1} a.$ (06 Marks)
 - c. Use general rules to trace the curve $y^2(a-x) = x^3$, a > 0 (07 Marks)

14MAT11

- 6 a. Show that $\overrightarrow{F} = \frac{xi + yj}{x^2 + y^2}$ is both solenoidal and irrotational. (07 Marks)
 - b. Show that $\operatorname{curl}\left(\overrightarrow{\phi A}\right) = \phi(\operatorname{curl}\overrightarrow{A}) + \operatorname{grad}\phi \times \overrightarrow{A}$. (06 Marks)
 - c. Use general rules to trace the curve, $r = a \cos 2\theta$ (four leaved rose). (07 Marks)

- $\frac{\textbf{Module}-\textbf{4}}{\text{Obtain the reduction formula for }} \int \sin^m x \cos^n x dx \text{ , where m and n are positive integers.}$
 - (07 Marks) b. Solve $y(1+xy+x^2y^2)dx + x(1-xy+x^2y^2)dy = 0$. (06 Marks)
 - c. Find the orthogonal trajectories of the family of curves $r = 4a \sec \theta \tan \theta$. (07 Marks)

- 8 a. Evaluate (i) $\int_{1}^{2a} x^2 \sqrt{2ax x^2} dx$ (ii) $\int_{1}^{2a} \frac{x^2}{\sqrt{2ax x^2}} dx$. (07 Marks)
 - b. Solve $\frac{dy}{dx} y \tan x = \frac{\sin x \cos^2 x}{v^2}$ (06 Marks)
 - The R-L series circuit differential equation acted on by an electromotive force Esin wt satisfies the differential equation, $L\frac{di}{dt} + Ri = E \sin \omega t$. If there is no current in the circuit initially, obtain the value of current at any time 't'. (07 Marks)

- a. Solve 2x+y+4z=12, 4x+11y-z=33, 8x-3y+2z=20 by Gauss elimination method.
 - b. Diagonalize the matrix, $A = \begin{bmatrix} -19 & 7 \\ -42 & 16 \end{bmatrix}$. (06 Marks)
 - Determine the largest eigen value and the corresponding eigen vector of $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ using Rayleigh's power method.

OR

- method, $4x_1 + x_2 + x_3 = 4$, $x_1 + 4x_2 2x_3 = 4$, a. Solve by LU decomposition $3x_1 + 2x_2 - 4x_3 = 6$.
 - Show that the transformation, $y_1 = 2x_1 2x_2 x_3$, $y_2 = -4x_1 + 5x_2 + 3x_3$, $y_3 = x_1 x_2 x_3$ is regular and find the inverse transformation.
 - c. Reduce the quadratic form, $x_1^2 + 5x_2^2 + x_3^2 + 2x_1x_2 + 6x_1x_3 + 2x_2x_3$ into canonical form by orthogonal transformation. Indicate the orthogonal transformation. (07 Marks)